
Billion vector baby!

Amine Gani

Roudy Khoury

2025-04-23

#HaystackConf

@a2lean

1



Who are we?

2

Experts in search technologies

Integrators of Elasticsearch, 
OpenSearch and Solr

Consulting and Training providers
Developers of a2 E-Commerce and 
Enterprise Search solution

Developers of all.site - your 
Collaborative Search Engine

2025-04-23              #HaystackConf          @a2lean



A Bit of Context: 
Lexical Search vs Semantic Search

3 2025-04-23              #HaystackConf          @a2lean



Lexical Search

4

● Keyword based
● Limited context
● Requires advanced configuration: 

○ Stemming 
○ Synonyms 
○ Lemmatization

● Low cost

2025-04-23              #HaystackConf          @a2lean



Move beyond text-matching
Semantic search

5 2025-04-23              #HaystackConf          @a2lean

https://www.elastic.co/fr/what-is/vector-search 

https://www.elastic.co/fr/what-is/vector-search


Hybrid search 

6

Best of both worlds

● Sparse vector for fast recall
● Then rerank using dense similarity

1. Get top 100 docs with TF-IDF, BM25…
2. Compute similarity with dense vectors 

(cosine, dot product…)
3. Rerank results

2025-04-23              #HaystackConf          @a2lean



Semantic search: in practice 

7

Semantic Text

Create Inference API

Define index mapping

Semantic query 
for search

Sparse/Dense type

Locally deployed

Create Inference API 

Define index mapping

Inference processor

Upload Model /w Eland

Model Management 
API 

Sparse vector or knn 
for search

Direct way for E5/Elser

Externally deployed

Create Inference API 

Define index mapping

Inference processor

Sparse vector or knn 
for search

Azure, OpenAI, HuggingFace etc…
Locally and externally 

deployed mode

2025-04-23              #HaystackConf          @a2lean



In this presentation, we’ll mainly focus 
on dense vectors

8 2025-04-23              #HaystackConf          @a2lean



Move beyond text-matching
Vectorization in a three-dimensional vector

9 2025-04-23              #HaystackConf          @a2lean

https://www.adelean.com/en/blog/20240131_vectors_sparse_and_dense/ 

Animal Size Friendliness Intelligence

Cat 0.25 0.85 0.80

Dog 0.30 0.90 0.80

Elephant 0.90 0.70 0.60

Dolphin 0.60 0.95 0.85

Parrot 0.15 0.80 0.75

https://www.adelean.com/en/blog/20240131_vectors_sparse_and_dense/


Move beyond text-matching
Vectorization in a three-dimensional vector

10 2025-04-23              #HaystackConf          @a2lean

Animal Size Friendliness Intelligence

Cat 0.25 0.85 0.80

Dog 0.30 0.90 0.80

Elephant 0.90 0.70 0.60

Dolphin 0.60 0.95 0.85

Parrot 0.15 0.80 0.75

https://www.adelean.com/en/blog/20240131_vectors_sparse_and_dense/ 

https://www.adelean.com/en/blog/20240131_vectors_sparse_and_dense/


Much more than 3 dimensions

11 2025-04-23              #HaystackConf          @a2lean



Number of vectors

12

…

...

index

documents
fields chunks

vectors

0.1|0.9|0.5|…|0.4

0.1|0.9|0.5|…|0.4

0.1|0.9|0.5|…|0.4

… …

The number of vectors 
can grow rapidly:

● Chunking strategy
● Vectorizing multiple 

fields
● Using multiple 

models

What if you need to 
handle 1 billion vectors?

2025-04-23              #HaystackConf          @a2lean



Element type

13

Defined at index creation time

This choice has a huge impact on memory 
and storage

The available options are:

● float: single-precision floating point 
numbers - high precision, use more space

● byte: 8-bit integers
● bit: binary vectors

The default value is float.

2025-04-23              #HaystackConf          @a2lean



Index options type 

14

● The type of algorithm to use

Some of the available options are:

● hnsw: Hierarchical Navigable Small 
World — approximate nearest 
neighbor (aNN)

● flat: brute-force kNN search over 
all vectors -> not scalable at billion 
vector level

2025-04-23              #HaystackConf          @a2lean



Flat indexing - KNN

15

● Simplest form of indexing
● Brute-force method: all vectors 

must be scanned to compute 
similarity.

● It does not scale well with large 
datasets.

ANN methods like HNSW are often 
preferred for production.

2025-04-23              #HaystackConf          @a2lean



Navigable Small World

16 2025-04-23              #HaystackConf          @a2lean



Navigable Small World

17 2025-04-23              #HaystackConf          @a2lean



Skip List

18

● A skip list is a data structure that allows 
fast search, insertion, and deletion

● Like a balanced tree, but built on top of 
linked lists.

● It uses multiple levels of linked lists to 
"skip over" elements, speeding up 
operations.

● Bottom layer = normal sorted linked list.

● Each higher level skips over more elements.

● Top level has very few nodes, just enough to 
make fast jumps.

O(LOG n)

2025-04-23              #HaystackConf          @a2lean

Level 3:       A --------> G
Level 2:       A ----> C ----> G
Level 1: A -> B -> C -> D -> E -> F -> G



Skip List

19 2025-04-23              #HaystackConf          @a2lean



HNSW - Hierarchical Navigable Small World

20

Based on the mechanics of probability skip 
lists and Navigable Small World (NSW) 
graphs.

Approximate search is faster but less 
accurate.

A few key parameters:

● m: the number of connections between 
each node in the graph at a given layer

● ef_construction: the size of the 
candidate list during graph 
construction

2025-04-23              #HaystackConf          @a2lean



Measuring distances

21

● Cosine Similarity is widely 
used and preferred for 
semantic search (texts, 
queries…)

● Euclidean is common in 
feature rich vectors

● Dot Product is also used when 
vectors are not normalized 
and we want to take into 
account the length of the 
vectors

2025-04-23              #HaystackConf          @a2lean



Euclidean distance

22 2025-04-23              #HaystackConf          @a2lean



Cosine similarity

23 2025-04-23               #HaystackConf                   @a2lean



Cosine Similarity vs Euclidean Distance

24 2025-04-23              #HaystackConf          @a2lean

Use case Algo

Search engines, NLP, embeddings Cosine

Feature-rich numeric datasets (images, etc.) Euclidean

Mixed types or hybrid models Sometimes a combination

You don't know? Normalize & try both!



Quantization

25

● Binary Quantization
○ Fastest and most memory-efficient method
○ Up to 40x faster search speed and 32x smaller memory footprint

● Scalar Quantization
○ Minimal loss in precision
○ Memory footprint reduced by up to 4x

● Product Quantization
○ Highest compression ratio
○ Memory footprint reduced by up to 64x

2025-04-23              #HaystackConf          @a2lean



Disk Memory Requirements

26

In the case of Float and hnsw:

In our case :

1 billion × 1024 × 4 + 1 billion × 4 × 16 = 3.8 TB of RAM

2025-04-23              #HaystackConf          @a2lean

Required memory =  (Number of vectors × Vector size × Size 
of Type) + (Number of vectors * 4 * HNSW.m )



Disk Memory Requirements

27

In the case of Float and hnws:

In our case :

1 billion × 1024 × 4 + 1 billion × 4 × 16 = 3.8 TB of RAM

2025-04-23              #HaystackConf          @a2lean

Required memory =  (Number of vectors × Vector size × Type) 
+ (Number of vectors * 4 * HNSW.m )



Better with quantization

28

In the case of Float and hnws_int8:

In our case :

1 billion × 1024 × 4 = 610 Go

2025-04-23              #HaystackConf          @a2lean

Required memory =  Number of vectors × ( Vector size + 4 )



Better with quantization

29

In the case of Float and hnws_int8:

In our case :

1 billion × 1024 × 4 = 610 Go

2025-04-23              #HaystackConf          @a2lean

Required memory = Number of vectors × ( Vector size + 4 ) Required memory =  Number of vectors × ( Vector size + 4 )



Better with quantization

30 2025-04-23              #HaystackConf          @a2lean

Float32 = (Number of vectors × Vector size × Size of Type) + 
(Number of vectors * 4 * HNSW.m )

int8 = Number of vectors × ( Vector size + 4 ) + (Number de 
vectors * 4 * HNSW.m )

int4 = Number of vectors × ( Vector size/2 + 4 ) + (Number 
de vectors * 4 * HNSW.m )

bbq = Number of vectors × ( Vector size/8 + 12 ) + (Number 
of vectors * 4 * HNSW.m )

GB by TYPE



Quantization methods

31 2025-04-23              #HaystackConf          @a2lean



Quantization methods

32 2025-04-23              #HaystackConf          @a2lean



Cluster configuration

33

● 64 Go of RAM for each node

2025-04-23              #HaystackConf          @a2lean

64Go

 

RAM 

 



Cluster configuration

34

● 64 Go of RAM for each node
● 32 Go dedicated to the JVM :

○ allows to benefit from 
compressed object pointers and 
Garbage collection issues

RAM 

 

64Go

 

2025-04-23              #HaystackConf          @a2lean



Cluster configuration

35

● 64 Go of RAM for each node
● 32 Go dedicated to the JVM :

○ allows to benefit from 
compressed object pointers and 
Garbage collection issues

● Vectors are stored off-heap, in 
the filesystem cache

2025-04-23              #HaystackConf          @a2lean

RAM 

 

64Go

 



Cluster configuration

36

If we simplify, we could say that the entire filesystem cache is 
available for our vectors.
But that's not entirely true — benchmarks are essential to 
understand real-world behavior!

In our case, with 610 GB of quantized int8 vectors, we need 
around:

● 20 data nodes
● dedicated master nodes
● coordinator nodes

and possibly ML nodes (depending on your use case).
This setup ensures enough memory and compute to support 
efficient search, ingestion, and model-based operations 
across the cluster.

2025-04-23              #HaystackConf          @a2lean



Preloading vectors into the cache

37

This can be very useful to speed up 
operations after a cluster restart.

However, don’t overuse it, or it might 
actually slow down search performance 
due to memory pressure.

There are different extensions depending 
on the type of vector being loaded:

● vex for HNSW graphs
● veq for quantized vectors
● vec for all non-quantized vectors

{
  "settings": {
    "index.store.preload":         

["veq", "vex"]
  }
}

2025-04-23              #HaystackConf          @a2lean



Disk Memory Requirements with quantization

38

Disk memory required = Number of vectors × Size of vector 
× Size of Element Type + Number of vectors × Size of 
vector × Size of Type (quantization)

When using Lucene quantization (which is the default when 
element_type is set to float), both quantized and 
non-quantized vectors are stored within the knn_vectors 
object.

To analyze how disk space is being used, you can run 
index/_disk_usage?run_expensive_tasks=true 

2025-04-23              #HaystackConf          @a2lean



_source and knn 

39

Additionally, non-quantized vectors are 
stored twice:

● In the knn_vector field
● In the _source field

You can disable storing vectors in _source 
to save space, but this removes the ability 
to perform a reindex later on—so it's a 
trade-off between storage optimization and 
operational flexibility.

"mappings": {
      "_source": {
        "excludes": [
          "vectors fields"
        ]
      }

2025-04-23              #HaystackConf          @a2lean



Disk Memory Requirements with quantization

40

With 1 billion vectors of 1024 dimensions

2025-04-23              #HaystackConf          @a2lean

Without _source With _source



Disk Memory Requirements with quantization

41

With 1 billion vectors of 1024 dimensions

2025-04-23              #HaystackConf          @a2lean

Without _source With _source

I can reduce it 
to less than 

1TB



42

Memory saving with quantization

How to maximize memory 
savings?

- External Quantization 
(binary or scalar)

2025-04-23              #HaystackConf          @a2lean



43

How to maximize memory 
savings?

- External Quantization 
(binary or scalar)

- Quantization with pipeline

2025-04-23              #HaystackConf          @a2lean

Element_type quantization



Demo

44 2025-04-23              #HaystackConf          @a2lean



Conclusion

45

What have we seen ?

● Vector search can be extremely resource-intensive, but we can 
adopt several strategies to reduce the cost:

○ Quantization
○ Better chunking strategies
○ Excluding  _source

What’s next ?

● We’ll explore how performance changes when RAM is insufficient.
● We’ll learn how to optimize vector search using different types of 

modeling.

2025-04-23              #HaystackConf          @a2lean



Thank you! 


