

Billion vector baby!

Amine Gani Roudy Khoury 2025-04-23 #HaystackConf

Who are we?

Q Adelean

- Q Experts in **search** technologies
- Q Integrators of Elasticsearch, OpenSearch and Solr
- Consulting and Training providers
 Developers of a2 E-Commerce and
- Enterprise Search solution
- Developers of all.site your
 Collaborative Search Engine

2025-04-23

#HaystackConf

A Bit of Context: Lexical Search vs Semantic Search

2025-04-23

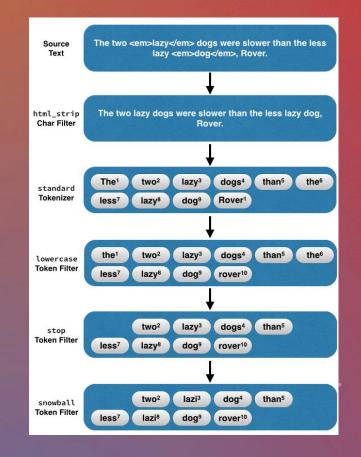
#HaystackConf

Lexical Search

- Keyword based
- Limited context

Requires advanced configuration:

- Stemming
- Synonyms
- Lemmatization
- Low cost



2025-04-23

#HaystackConf

Semantic search

interest the states of provide the provide press and

Images Vector **Nearest neighbor** Vector representation representation ... ••• Documents Query Dense vectors **Transform** into **Transform into** 0 0 0 embedding embedding Audio Results

https://www.elastic.co/fr/what-is/vector-search

2025-04-23

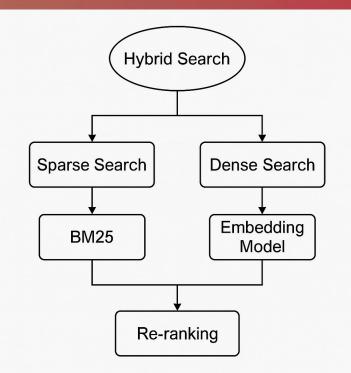
#HaystackConf

Hybrid search

Best of both worlds

- Sparse vector for fast recall
- Then rerank using dense similarity

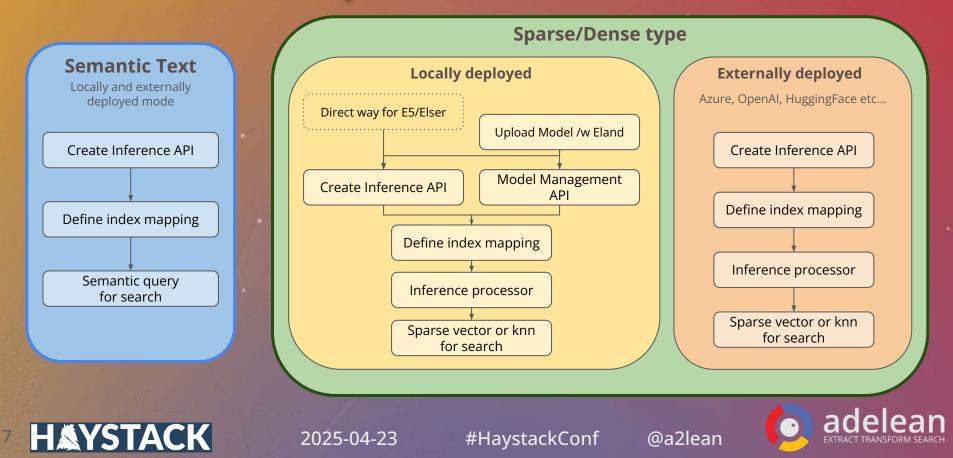
- 1. Get top 100 docs with TF-IDF, BM25...
- 2. Compute similarity with dense vectors (cosine, dot product...)
- 3. Rerank results



2025-04-23

#HaystackConf

Semantic search: in practice

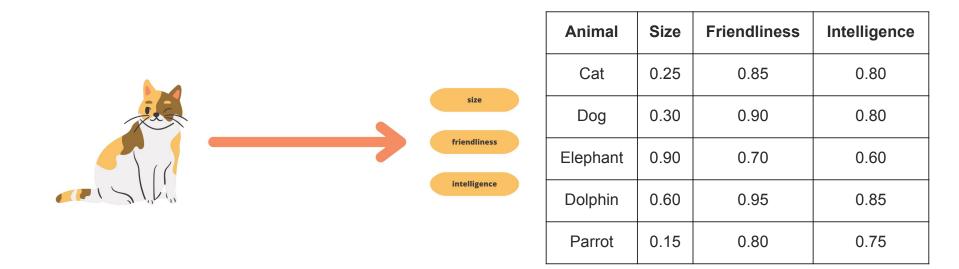


In this presentation, we'll mainly focus on dense vectors

2025-04-23

#HaystackConf

Vectorization in a three-dimensional vector



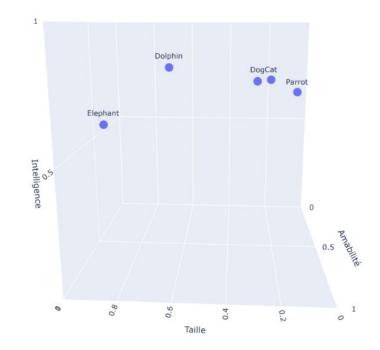
https://www.adelean.com/en/blog/20240131_vectors_sparse_and_dense/

2025-04-23

#HaystackConf

Vectorization in a three-dimensional vector

Animal	Size	Friendliness	Intelligence	
Cat	0.25	0.85	0.80	
Dog	0.30	0.90	0.80	
Elephant	0.90	0.70	0.60	
Dolphin	0.60	0.95	0.85	
Parrot	0.15	0.80	0.75	



https://www.adelean.com/en/blog/20240131_vectors_sparse_and_dense/

2025-04-23

#HaystackConf

Much more than 3 dimensions

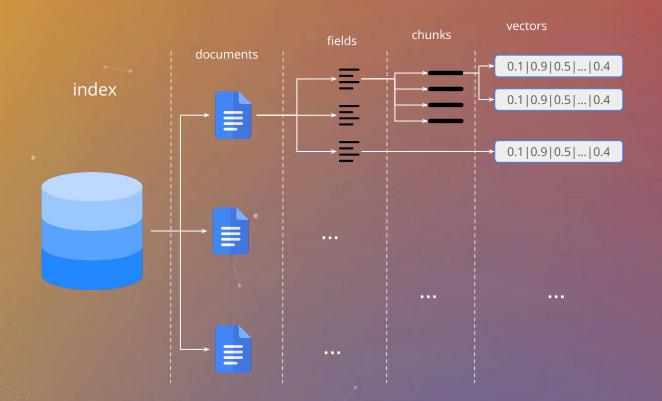
Rank 🔺	Model 🔺	Model Size (Million ▲ Parameters)	Memory Usage (GB, fp32)	Embedding Dimensions	Max Tokens ▲
44	<u>e5-mistral-7b-instruct</u>	7111	26.49	4096	32768
65	<u>e5-mistral-7b-instruct</u>	7111	26.49	4096	32768
78	SGPT-5.8B-weightedmean-nli-bi ∢ →	5874	21.88	4096	2048
81	<u>sgpt-bloom-7b1-msmarco</u>	7068	26.33	4096	2048
1	<u>bge-multilingual-gemma2</u>	9242	34.43	3584	8192
2	<u>gte-Qwen2-7B-instruct</u>	7613	28.36	3584	131072
21	sentence_croissant_alpha_v0.4	1280	4.77	2048	2048
22	sentence_croissant_alpha_v0.3 ∢ →	1280	4.77	2048	2048
24	<pre>sentence_croissant_alpha_v0.2</pre>	1280	4 77	2048	2048

2025-04-23

#HaystackConf

@a2lean

Number of vectors



The number of vectors can grow rapidly:

- Chunking strategy
- Vectorizing multiple fields
- Using multiple models

What if you need to handle 1 billion vectors?

2025-04-23

#HaystackConf

Element type

Defined at index creation time

This choice has a huge impact on memory and storage

The available options are:

- float: single-precision floating point numbers - high precision, use more space
- byte: 8-bit integers
- bit: binary vectors

The default value is float.

13 HAYSTACK

2025-04-23

#HaystackConf

@a2lean

"vector": {

"dims": 1024,

"index": true,

"m": 16,

"type": "dense_vector", "element_type": "byte",

"similarity": "cosine",

"ef_construction": 100

"index_options": {
 "type": "hnsw",

Index options type

- The type of algorithm to use Some of the available options are:
 - hnsw: Hierarchical Navigable Small World — approximate nearest neighbor (aNN)
 - flat: brute-force kNN search over all vectors -> not scalable at billion vector level

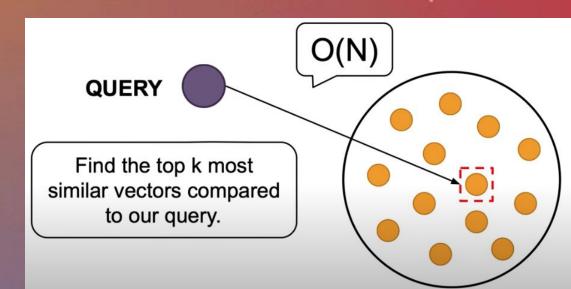
2025-04-23

#HaystackConf

Flat indexing - KNN

- Simplest form of indexing
- Brute-force method: all vectors must be scanned to compute similarity.
- It does not scale well with large datasets.

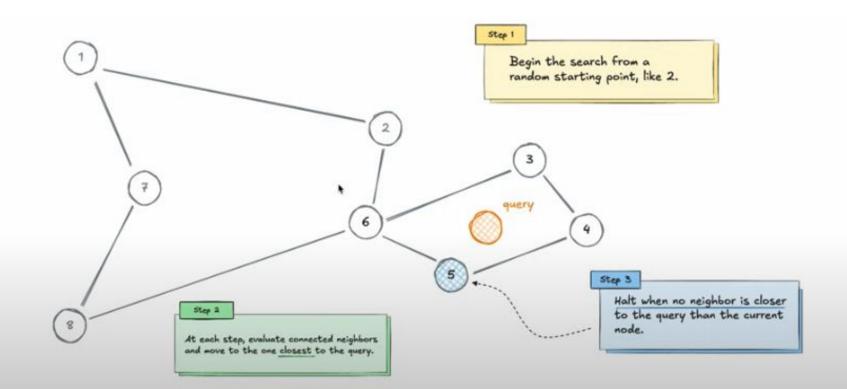
ANN methods like HNSW are often preferred for production.



2025-04-23

#HaystackConf

Navigable Small World

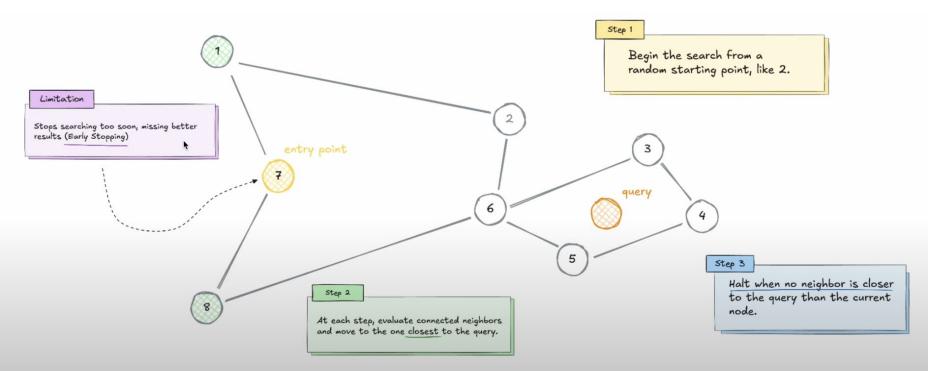


16 HAYSTACK

2025-04-23

#HaystackConf

Navigable Small World



2025-04-23

#HaystackConf

Skip List

- A skip list is a data structure that allows fast search, insertion, and deletion
- Like a balanced tree, but built on top of linked lists.
- It uses multiple levels of linked lists to "skip over" elements, speeding up operations.

Level 3: A -----> G Level 2: A ----> C ----> G Level 1: A -> B -> C -> D -> E -> F -> G

O(LOG n)

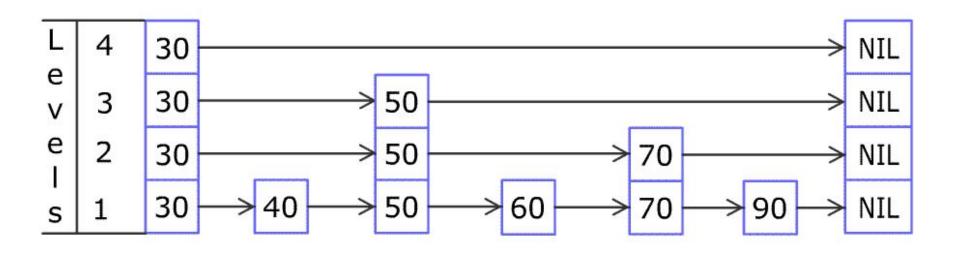
- Bottom layer = normal sorted linked list.
- Each higher level skips over more elements.
- Top level has very few nodes, just enough to make fast jumps.

2025-04-23

#HaystackConf

Skip List

. Alterates alter a failed a post that the second states of the second s



2025-04-23

#HaystackConf

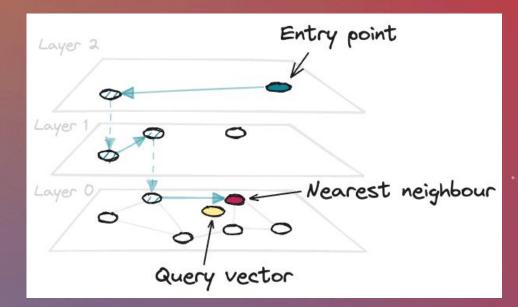
HNSW - Hierarchical Navigable Small World

Based on the mechanics of probability skip lists and Navigable Small World (NSW) graphs.

Approximate search is faster but less accurate.

A few key parameters:

- m: the number of connections between each node in the graph at a given layer
- ef_construction: the size of the candidate list during graph construction

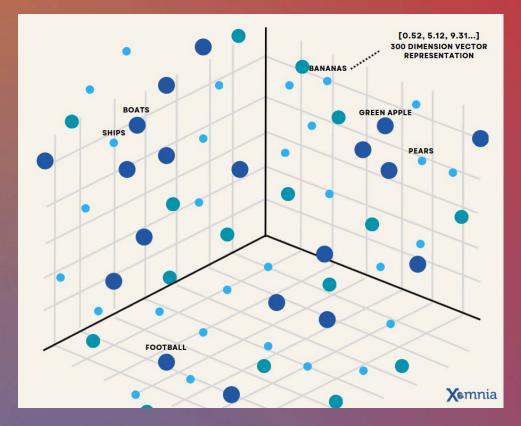


2025-04-23

#HaystackConf

Measuring distances

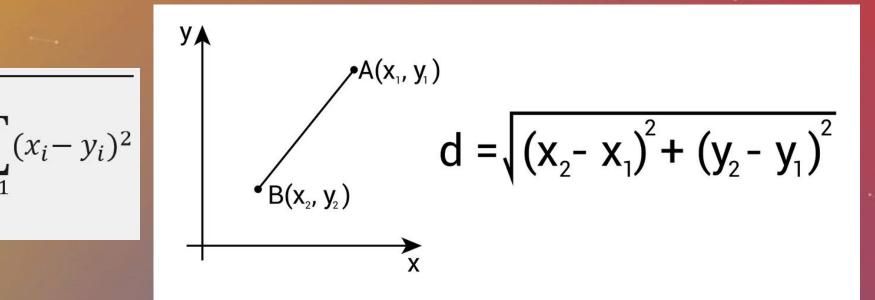
- Cosine Similarity is widely used and preferred for semantic search (texts, queries...)
- Euclidean is common in feature rich vectors
- Dot Product is also used when vectors are not normalized and we want to take into account the length of the vectors



2025-04-23

#HaystackConf

Euclidean distance



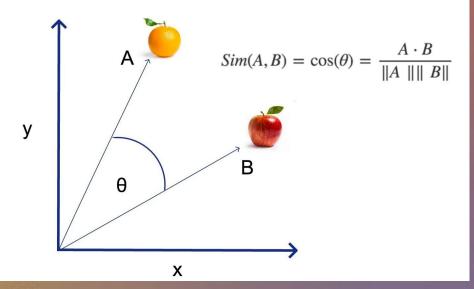
n

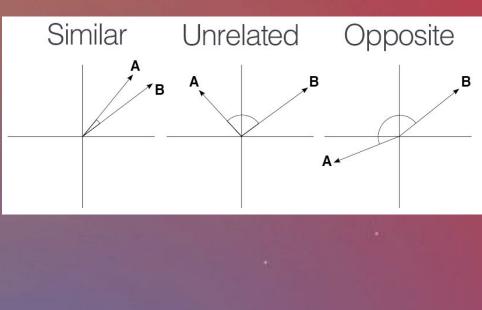
2025-04-23

#HaystackConf

Cosine similarity

Cosine Similarity





2025-04-23

#HaystackConf

Cosine Similarity vs Euclidean Distance

Use case	Algo
Search engines, NLP, embeddings	Cosine
Feature-rich numeric datasets (images, etc.)	Euclidean
Mixed types or hybrid models	Sometimes a combination
You don't know?	Normalize & try both!

2025-04-23

#HaystackConf

Quantization

• Binary Quantization

- Fastest and most memory-efficient method
- Up to 40x faster search speed and 32x smaller memory footprint

• Scalar Quantization

- Minimal loss in precision
- Memory footprint reduced by up to 4x

Product Quantization

- Highest compression ratio
- Memory footprint reduced by up to 64x

2025-04-23

#HaystackConf

Disk Memory Requirements

In the case of **Float** and **hnsw**:

Required memory = (Number of vectors × Vector size × Size
of Type) + (Number of vectors * 4 * HNSW.m)

In our case :

1 billion × 1024 × 4 + 1 billion × 4 × 16 = 3.8 TB of RAM

2025-04-23

#HaystackConf

Disk Memory Requirements

In the case of **Float** and **hnws**:

Required memory = (Number of vectors × Vector size × Type)
+ (Number of vectors * 4 * HNSW.m)

In our case : 1 billion × 1024 × 4 + 1 billion × 4 × 16 = 3.8 TB of RAM

2025-04-23

#HaystackConf

Better with quantization

In the case of Float and hnws_int8:

Required memory = Number of vectors × (Vector size + 4)

In our case : 1 billion × 1024 × 4 = 610 Go

2025-04-23

#HaystackConf

Better with quantization

In the case of Float and hnws_int8:

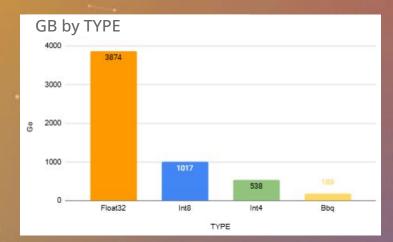
Required memory = Number of vectors × (Vector size + 4)

In our case : 1 *billion* × 1024 × 4 = 610 Go

2025-04-23

#HaystackConf

Better with quantization



Float32 = (Number of vectors × Vector size × Size of Type) + (Number of vectors * 4 * HNSW.m)

int8 = Number of vectors × (Vector size + 4) + (Number de vectors * 4 * HNSW.m)

int4 = Number of vectors × (Vector size/2 + 4) + (Number de vectors * 4 * HNSW.m)

bbq = Number of vectors × (Vector size/8 + 12) + (Number of vectors * 4 * HNSW.m)

2025-04-23

#HaystackConf

Quantization methods

Method	Туре	Available in Free Tier	Description
<pre>element_type: byte</pre>	8-bit	Yes	Lightweight, fast search; lowest memory usage but may reduce accuracy.
<pre>element_type: bfloat16</pre>	16-bit	Yes (from 8.12)	Balanced approach; lower memory than float32 with better accuracy than byte.
External PQ / OPQ	Preprocessing	Yes (store + search)	Quantize vectors externally; Elasticsearch stores and searches the result.
BBQ (Blockwise Quantization)	Blockwise	No (experimental only)	Prototype stage; aims for high compression with minimal loss in quality.

2025-04-23

#HaystackConf

Quantization methods

Lucene scalar quantization

Use built-in scalar quantization for the Lucene engine

Faiss product quantization

Use built-in product quantization for the Faiss engine

Faiss 16-bit scalar quantization

Use built-in scalar quantization for the Faiss engine

Binary quantization

Use built-in binary quantization for the Faiss engine

2025-04-23

#HaystackConf

• 64 Go of RAM for each node

64Go

2025-04-23

#HaystackConf

@a2lean

RAM

- 64 Go of RAM for each node
 32 Go dedicated to the JVM :
 - allows to benefit from
 compressed object pointers and
 Garbage collection issues

2025-04-23

#HaystackConf

@a2lean

RAM

- 64 Go of RAM for each node
 32 Go dedicated to the JVM :
 - allows to benefit from compressed object pointers and Garbage collection issues
- Vectors are stored off-heap, in the filesystem cache

64Go

2025-04-23

#HaystackConf

@a2lean

RAM

If we simplify, we could say that the entire filesystem cache is available for our vectors. But that's not entirely true — benchmarks are essential to understand real-world behavior!

In our case, with 610 GB of quantized int8 vectors, we need around:

- 20 data nodes
- dedicated master nodes
- coordinator nodes

and possibly ML nodes (depending on your use case). This setup ensures enough memory and compute to support efficient search, ingestion, and model-based operations across the cluster.

2025-04-23

#HaystackConf

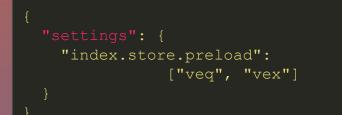
Preloading vectors into the cache

This can be very useful to speed up operations after a cluster restart.

However, don't overuse it, or it might actually slow down search performance due to memory pressure.

There are different extensions depending on the type of vector being loaded:

- **vex** for HNSW graphs
- **veq** for quantized vectors
- vec for all non-quantized vectors



2025-04-23

#HaystackConf

Disk Memory Requirements with quantization

Disk memory required = Number of vectors × Size of vector × Size of Element Type + Number of vectors × Size of vector × Size of Type (quantization)

When using Lucene quantization (which is the default when element_type is set to float), both quantized and non-quantized vectors are stored within the knn_vectors object.

To analyze how disk space is being used, you can run index/ disk usage?run expensive tasks=true

2025-04-23

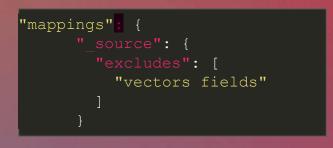
#HaystackConf

_source and knn

Additionally, non-quantized vectors are stored twice:

- In the knn_vector field
- In the _source field

You can disable storing vectors in _source to save space, but this removes the ability to perform a reindex later on—so it's a trade-off between storage optimization and operational flexibility.

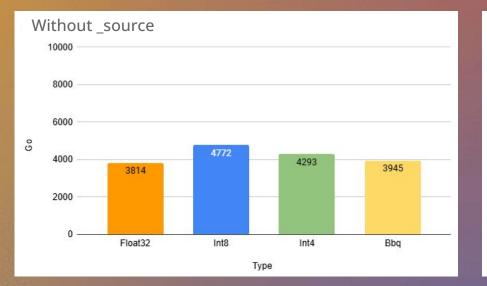


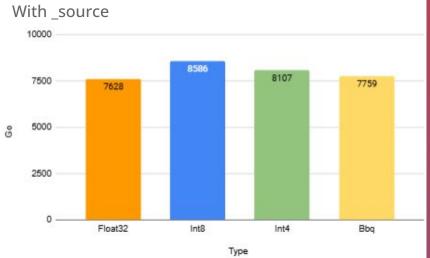
2025-04-23

#HaystackConf

Disk Memory Requirements with quantization

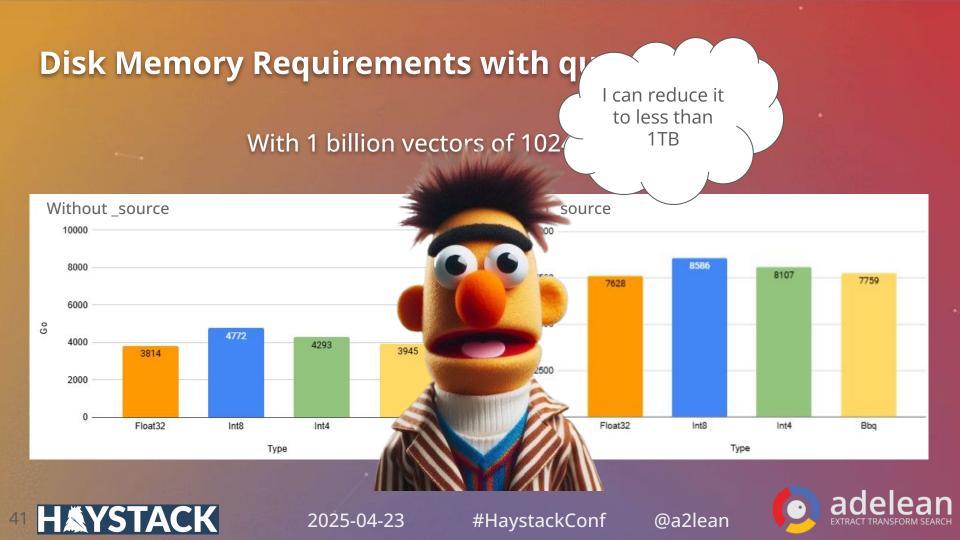
With 1 billion vectors of 1024 dimensions





2025-04-23

#HaystackConf



Memory saving with quantization

How to maximize memory savings?

- External Quantization (binary or scalar) from sentence_transformers import SentenceTransformer
from sentence_transformers.quantization import quantize_embeddings

1. Load an embedding model model = SentenceTransformer('Lajavaness/bilingual-embedding-large', trust_remote_code=True)

2a. Encode some text using "binary" quantization binary_embeddings = model.encode(["I am driving to the lake.", "It is a beautiful day."], precision="binary",

2025-04-23

#HaystackConf

Element_type quantization

How to maximize memory savings?

- External Quantization (binary or scalar)
- Quantization with pipeline

PUT _ingest/pipeline/scalar_quantization_pipeline

```
"description": "Pipeline to quantize to int8",
"processors": [
```

```
"script": {
    "source": """
    def min_val = 100;
    def max_val = 0;
```

for(value in ctx.vector){
 if(value < min_val) min_val = value;
 if(value > max_val) max_val = value;
}

```
def range = max_val - min_val;
```

def quant_min = -128; def quant_max = 127;

```
def quantized_vector = [];
for (v in ctx.vector) {
    def normalized = (v - min_val) / range;
    def scaled = normalized * (quant_max - quant_min) + quant_min;
    quantized_vector.add(Math.round(scaled));
}
```

ctx.quantized_vector = quantized_vector;

2025-04-23

#HaystackConf

Demo

2025-04-23

#HaystackConf

Conclusion

What have we seen?

- Vector search can be extremely resource-intensive, but we can adopt several strategies to reduce the cost:
 - Quantization
 - Better chunking strategies
 - Excluding _source

What's next?

- We'll explore how performance changes when RAM is insufficient.
- We'll learn how to optimize vector search using different types of modeling.

2025-04-23

#HaystackConf

HAYSTACK

Thank you!



info@adelean.com

linkedin.com/company/adelean

adelean search with all.site